Lecture 19 of David Kung's Mind-Bending Math is called "Crazy Kinds of Connectedness." In this lecture, Kung introduces us to the world of topology.
I mentioned topology back in October, while discussing Mandelbrot's fractals. Recall that a topologist is someone who can't tell the difference between a doughnut and a coffee cup. In other words, a doughnut and a coffee cup are topologically equivalent, because they each have one whole. There exists a transformation mapping one to the other called a homeomorphism.
In this lecture Kung describes some weird shapes -- indeed, he quips that a topologists' job is to find stranger and stranger figures. One such figure is the Mobius strip -- a figure created by taking a strip, putting a half-twist in it, and taping the two ends together. A Mobius strip is considered to have just one side and one edge. As the title of the lecture implies, a Mobius strip has a "crazy kind of connectedness," as it's connected, but not simply connected. On a plane or a sphere, a curve can be shrunk down to a point, but on a Mobius strip, the edge can't be continuous deformed to a point.
Another property of the Mobius strip is that it's non-orientable. We've seen the word "orientation" before regarding transformations -- reflections reverse orientation, translations preserve it. Here's why we say that a Mobius strip is not orientable -- take a triangle on a Mobius strip and reflect it, which would switch its orientation. It's now possible that we can slide (translate) this mirror image all the way around the Mobius strip until it coincides with the original preimage -- which would imply that the triangle has opposite orientation from itself! This contradiction implies that the Mobius strip is, in fact, non-orientable.
The Quick Conundrum involves a special type of knot -- a braid. Kung shows how to take a sheet of fabric with two slits and fold it until it creates the braid -- thereby implying that the double-slitted fabric and the braid are topologically equivalent.
Then Kung moves on to a famous theorem -- the Four-Color Theorem. Just like Lesson 12-7 "Can There Be Giants" from yesterday, the Four-Color Theorem appears in the U of Chicago text -- in fact it's Lesson 9-8. We skipped over it only because we omitted Chapter 9 entirely (as the rest of the material, 3D figures, are covered more thoroughly along with volume in Chapter 10).
The Four-Color Theorem states that any map can be colored with at most four colors. The U of Chicago tells us that the theorem holds on either a plane or a sphere. Kung points out that on other surfaces, different numbers of colors are required. On a Mobius strip, six colors are needed. Both Kung and the U of Chicago text mention that for a special doughnut shape (or is it a coffee cup shape?) called a torus, seven colors are necessary.
Today I subbed for a middle school special ed class who teaches reading and history. But during my sixth period conference, I was assigned to a sixth grade math class -- it's at the same school, but right next door to the class I covered earlier this week.
The teacher for this class left on short notice, so I wasn't sure of the correct assignment. Apparently, the previous night's homework was an introduction to exponents, but there was a stack of worksheets involving reflections on the front desk. I thought that reflections are a bit advanced for sixth grade, but the TA, an eighth grader, confirmed that they really were learning about reflections. And so I gave HW answers quickly and played Conjectures/"Who Am I?" game using the reflections worksheet -- points on a coordinate plane are given and students must reflect them over one of the axes.
The class was already divided into six groups of six students each. Of these, one of the groups finished all of the questions quickly and were way ahead of the questions I was asking during the "Who Am I?" game. Another group, meanwhile, was struggling. My game is designed to help me assist struggling groups, but it was tough because this group was lost while two of the other groups were misbehaving -- one by making too much noise, another by tearing up the worksheet into small scraps of paper and throwing them like spitballs.
Here I identify some of the problems with today's game -- the start of the class was chaotic as I was trying to figure out what to do with the homework. Also, I believe that this game works most smoothly with groups of four, not six. But I had to go with the table groups into which the class was already divided.
It's time for my traditionalist post for this week. Actually, I've been thinking about what Dr. Ze'ev Wurman and other Common Core opponents have been saying about testing the students less often than annually.
I mentioned topology back in October, while discussing Mandelbrot's fractals. Recall that a topologist is someone who can't tell the difference between a doughnut and a coffee cup. In other words, a doughnut and a coffee cup are topologically equivalent, because they each have one whole. There exists a transformation mapping one to the other called a homeomorphism.
In this lecture Kung describes some weird shapes -- indeed, he quips that a topologists' job is to find stranger and stranger figures. One such figure is the Mobius strip -- a figure created by taking a strip, putting a half-twist in it, and taping the two ends together. A Mobius strip is considered to have just one side and one edge. As the title of the lecture implies, a Mobius strip has a "crazy kind of connectedness," as it's connected, but not simply connected. On a plane or a sphere, a curve can be shrunk down to a point, but on a Mobius strip, the edge can't be continuous deformed to a point.
Another property of the Mobius strip is that it's non-orientable. We've seen the word "orientation" before regarding transformations -- reflections reverse orientation, translations preserve it. Here's why we say that a Mobius strip is not orientable -- take a triangle on a Mobius strip and reflect it, which would switch its orientation. It's now possible that we can slide (translate) this mirror image all the way around the Mobius strip until it coincides with the original preimage -- which would imply that the triangle has opposite orientation from itself! This contradiction implies that the Mobius strip is, in fact, non-orientable.
The Quick Conundrum involves a special type of knot -- a braid. Kung shows how to take a sheet of fabric with two slits and fold it until it creates the braid -- thereby implying that the double-slitted fabric and the braid are topologically equivalent.
Then Kung moves on to a famous theorem -- the Four-Color Theorem. Just like Lesson 12-7 "Can There Be Giants" from yesterday, the Four-Color Theorem appears in the U of Chicago text -- in fact it's Lesson 9-8. We skipped over it only because we omitted Chapter 9 entirely (as the rest of the material, 3D figures, are covered more thoroughly along with volume in Chapter 10).
The Four-Color Theorem states that any map can be colored with at most four colors. The U of Chicago tells us that the theorem holds on either a plane or a sphere. Kung points out that on other surfaces, different numbers of colors are required. On a Mobius strip, six colors are needed. Both Kung and the U of Chicago text mention that for a special doughnut shape (or is it a coffee cup shape?) called a torus, seven colors are necessary.
Today I subbed for a middle school special ed class who teaches reading and history. But during my sixth period conference, I was assigned to a sixth grade math class -- it's at the same school, but right next door to the class I covered earlier this week.
The teacher for this class left on short notice, so I wasn't sure of the correct assignment. Apparently, the previous night's homework was an introduction to exponents, but there was a stack of worksheets involving reflections on the front desk. I thought that reflections are a bit advanced for sixth grade, but the TA, an eighth grader, confirmed that they really were learning about reflections. And so I gave HW answers quickly and played Conjectures/"Who Am I?" game using the reflections worksheet -- points on a coordinate plane are given and students must reflect them over one of the axes.
The class was already divided into six groups of six students each. Of these, one of the groups finished all of the questions quickly and were way ahead of the questions I was asking during the "Who Am I?" game. Another group, meanwhile, was struggling. My game is designed to help me assist struggling groups, but it was tough because this group was lost while two of the other groups were misbehaving -- one by making too much noise, another by tearing up the worksheet into small scraps of paper and throwing them like spitballs.
Here I identify some of the problems with today's game -- the start of the class was chaotic as I was trying to figure out what to do with the homework. Also, I believe that this game works most smoothly with groups of four, not six. But I had to go with the table groups into which the class was already divided.
It's time for my traditionalist post for this week. Actually, I've been thinking about what Dr. Ze'ev Wurman and other Common Core opponents have been saying about testing the students less often than annually.
I believe that my proposed standardized test can provide useful information to students, teachers, and parents -- but if I were trying to convince the public to adopt my standardized test, the public is unlikely to believe that it will provide useful information. It is just like the fable of the Boy Who Cried Wolf. The boy lies so much about a wolf that no one believes him when the wolf comes. And likewise the public has distrusted standardized testing so much -- believing that the main direction of information flow is from students, teachers, and parents toward either the government or the large testing companies -- that no one will believe me when I saw that my test moves information in the opposite direction.
And so in order to gain everyone's trust, I can't give my test to the students every year. Instead, I would have to prove that my test provides useful information to students, teachers, and parents. If I do it correctly, the public would want to administer my test every year, if not even more often.
How do we decide which years to administer the test? One way is to spread it out so that a different test is given each year -- say English in third grade, math in fourth grade, science (as in the Next Generation Science Standards) in fifth grade, then repeat the pattern in middle school. But some may prefer there to be years within Grades 3-8 when there are no standardized tests. By this line of reasoning, all three tests should be given during one elementary and one middle school year. But then students would have to spend so much time during those years preparing for tests.
So let's compromise -- take two tests one year, one another year, and none yet another year. Now there are test-free years without there being three-test years. We can give the math and science tests in the same year, as these subjects should reinforce each other. As I mentioned before, a great year to give the middle school math test can be either seventh grade (to determine Algebra I vs. Math 8 placement for eighth grade) or sixth grade (to determine Pre-Algebra vs. Math 7 placement for seventh grade). I prefer the latter, as three years earlier we can test third graders on their times tables.
The sixth grade math test can consist of around 14-16 questions so that students can finish the test in regular class period (of course, if it's computer-adaptive then the number of questions can vary greatly from student to student). The third grade math test can contain many more questions, since some questions should be times tables questions that can be answered in seconds.
The general idea comes from generalizations of yesterday's Side-Splitting Theorem. If a trio of parallel lines splits a transversal proportionally, then it splits any transversal proportionally. In particular, if the parallel lines are equidistant, then any transversal is split equally. This extends to any number of equidistant parallel lines.
So all we need are a bunch of equidistant parallel lines. And many students just happen to be carrying not just one, but several pages filled almost completely with equidistant parallel lines.
I'm speaking, of course, about lined notebook paper.
Wu's activity is simple. He begins by picking a point A near the middle of the top line of the notebook paper, and then two points B and C on a certain line below the top -- Wu chooses the fifth. Then he finds the points where rays AB and AC intersect another line -- in this case the seventh -- and labels these points B' and C', respectively. Then it can be proved using the Side-Splitting Theorem thatB'C' is exactly 7/5 as long as BC.
This activity can be made more dramatic by presenting a segment on one of the lines and asking the student to draw another segment that is exactly 7/5 as long as the first, without measuring. That's the tricky part, since the straightedges that the students use to draw the lines are likely to be rulers that allow the students to measure them.
So far, I haven't mentioned the U of Chicago text. Notice that so far in Chapter 12, I haven't been giving the Exploration Questions at the end of each lesson as a bonus. But notice that, right at the end of yesterday's Section 12-10, Exploration Question 22 is similar to the Wu activity.
Here the student is asked to take a segmentAB and divide it into fifths. We see that as given, the steps can be constructed with a straightedge and compass, including the equidistant parallel lines. But instead, I want to use the equidistant parallel lines of the notebook paper.
The best way to do the U of Chicago activity is to have the students take something small, such as an index card, and divide it into something like thirds or fifths. (Halves and quarters are trivial.) To divide the index card into fifths, the student places one corner of the card on the top line of the notebook paper and another corner on the fifth line down from the top. Then the four lines in between touch the paper at exactly the one-fifth marks of the card, so the student labels these points. Finally, the card is lifted from the paper and folded. If these are done exactly (but this is difficult), then the card has been successfully divided into fifths.
As I mentioned before, giving a word problem to get the students thinking about slope does occur in pre-Common Core texts. For example, Section 3-5 of the Glencoe Algebra I text -- the book I used for student teaching -- is on "Proportional and Nonproportional Relationships." The lesson begins with a chart showing the number of miles driven for each hour of driving, and students have to figure out that every time the number of hours increases by one, the number of miles increases by 50. And the very next lesson, Section 4-1, "Rate of Change and Slope," the students calculate the speed -- and therefore the slope -- by dividing the change in distance by the change in time.
But when actually teaching Chapter 3, my master teacher had me teach Sections 3-1 and 3-2 on relations and functions, then skip directly to Chapter 4 -- there was no Chapter 3 test. And I don't remember how much of Sections 4-1 and 4-2 we actually taught -- we might have just given the students a separate worksheet on slope before diving right in to Section 4-3, on graphing equations in slope-intercept form. I believe that this practice was common for most Algebra I classes before Common Core forced us to emphasize these sections that we used to skip.
So all we need are a bunch of equidistant parallel lines. And many students just happen to be carrying not just one, but several pages filled almost completely with equidistant parallel lines.
I'm speaking, of course, about lined notebook paper.
Wu's activity is simple. He begins by picking a point A near the middle of the top line of the notebook paper, and then two points B and C on a certain line below the top -- Wu chooses the fifth. Then he finds the points where rays AB and AC intersect another line -- in this case the seventh -- and labels these points B' and C', respectively. Then it can be proved using the Side-Splitting Theorem that
This activity can be made more dramatic by presenting a segment on one of the lines and asking the student to draw another segment that is exactly 7/5 as long as the first, without measuring. That's the tricky part, since the straightedges that the students use to draw the lines are likely to be rulers that allow the students to measure them.
So far, I haven't mentioned the U of Chicago text. Notice that so far in Chapter 12, I haven't been giving the Exploration Questions at the end of each lesson as a bonus. But notice that, right at the end of yesterday's Section 12-10, Exploration Question 22 is similar to the Wu activity.
Here the student is asked to take a segment
The best way to do the U of Chicago activity is to have the students take something small, such as an index card, and divide it into something like thirds or fifths. (Halves and quarters are trivial.) To divide the index card into fifths, the student places one corner of the card on the top line of the notebook paper and another corner on the fifth line down from the top. Then the four lines in between touch the paper at exactly the one-fifth marks of the card, so the student labels these points. Finally, the card is lifted from the paper and folded. If these are done exactly (but this is difficult), then the card has been successfully divided into fifths.
As I mentioned before, giving a word problem to get the students thinking about slope does occur in pre-Common Core texts. For example, Section 3-5 of the Glencoe Algebra I text -- the book I used for student teaching -- is on "Proportional and Nonproportional Relationships." The lesson begins with a chart showing the number of miles driven for each hour of driving, and students have to figure out that every time the number of hours increases by one, the number of miles increases by 50. And the very next lesson, Section 4-1, "Rate of Change and Slope," the students calculate the speed -- and therefore the slope -- by dividing the change in distance by the change in time.
But when actually teaching Chapter 3, my master teacher had me teach Sections 3-1 and 3-2 on relations and functions, then skip directly to Chapter 4 -- there was no Chapter 3 test. And I don't remember how much of Sections 4-1 and 4-2 we actually taught -- we might have just given the students a separate worksheet on slope before diving right in to Section 4-3, on graphing equations in slope-intercept form. I believe that this practice was common for most Algebra I classes before Common Core forced us to emphasize these sections that we used to skip.
The students discovered nothing because few of them were calculating the rates correctly, so none of them realized that the rate was always the same no matter which points they chose. Instead, according to the traditionalists, the "sage on the stage" should just tell them the slope formula and have the students practice plugging in points and finding the slope.
But then again, the students in my student teaching class still struggled with the slope lesson even when taught traditionally. Chapter 4 was a turning point for many students in that class, as many students who performed well on previous chapters struggled from this point on. Many students simply did not remember the slope formula, no matter how many times I gave the formula -- and some simply chose not to listen to me when I told them the formula.
Of course, students will struggle no matter how slope is taught if they are generally weak on operations with integers. As we already know, many students simply don't remember how to add, subtract, multiply, and divide integers from year to year -- that is, a student can be taught to excel on an integer test one year, yet won't remember the integer rules the following year. It is one of the two main topics from grades 4-7 that students can't remember -- the other, of course, is fractions. But unfortunately, slope is heavy on both integers and fractions. To calculate slope, one must add -- actually subtract -- integers for both the rise and the run, and when one divides these, the answer may be a fraction.
Is it possible to compromise between the traditionalist and progressive philosophies here to obtain a slope lesson that will get most of the students to do well? I can't help but notice that the example that I mentioned earlier has a rate, or slope, of 50 mph. Therefore, students are more likely not to make a mistake and reach the Aha! moment that the rate is the same no matter which times they happen to choose.
And so we, as teachers, must be careful when designing the sort of lesson that the Common Core Standards encourage. The traditionalists are correct that discovery lessons won't work unless the students get the basic calculations correct, so let's design "Opening Activities" and "Anticipatory Sets" so that the students are likely to get the answers correct. This means delaying problems with negatives and fractions until after the opening activity, by which time the formula is given.
Then again, my slope lesson next week is from a geometric, not algebraic, perspective. I won't be focusing on how a constant speed of 50 mph is related to the constant slope of the line, but rather how similarity will be used to prove that a line has constant slope. So this will be tricky.
CCSS.MATH.CONTENT.8.G.A.3
Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.
Notice that eighth grade is the first in which transformations appear.
But then again, the students in my student teaching class still struggled with the slope lesson even when taught traditionally. Chapter 4 was a turning point for many students in that class, as many students who performed well on previous chapters struggled from this point on. Many students simply did not remember the slope formula, no matter how many times I gave the formula -- and some simply chose not to listen to me when I told them the formula.
Of course, students will struggle no matter how slope is taught if they are generally weak on operations with integers. As we already know, many students simply don't remember how to add, subtract, multiply, and divide integers from year to year -- that is, a student can be taught to excel on an integer test one year, yet won't remember the integer rules the following year. It is one of the two main topics from grades 4-7 that students can't remember -- the other, of course, is fractions. But unfortunately, slope is heavy on both integers and fractions. To calculate slope, one must add -- actually subtract -- integers for both the rise and the run, and when one divides these, the answer may be a fraction.
Is it possible to compromise between the traditionalist and progressive philosophies here to obtain a slope lesson that will get most of the students to do well? I can't help but notice that the example that I mentioned earlier has a rate, or slope, of 50 mph. Therefore, students are more likely not to make a mistake and reach the Aha! moment that the rate is the same no matter which times they happen to choose.
And so we, as teachers, must be careful when designing the sort of lesson that the Common Core Standards encourage. The traditionalists are correct that discovery lessons won't work unless the students get the basic calculations correct, so let's design "Opening Activities" and "Anticipatory Sets" so that the students are likely to get the answers correct. This means delaying problems with negatives and fractions until after the opening activity, by which time the formula is given.
Then again, my slope lesson next week is from a geometric, not algebraic, perspective. I won't be focusing on how a constant speed of 50 mph is related to the constant slope of the line, but rather how similarity will be used to prove that a line has constant slope. So this will be tricky.
CCSS.MATH.CONTENT.8.G.A.3
Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.
Notice that eighth grade is the first in which transformations appear.