Thursday, September 24, 2020

Lesson 2-7: Terms Associated with Polygons (Day 27)

Before we begin today's lesson, let's continue to take a peek at that seventh grade class I subbed for last week -- the one whose Google Classroom notifications I'm still getting in my email.

Well, today another IXL lesson was assigned. This time, it's due tomorrow. So we now know that this teacher usually assigns two IXL lessons per week. Recall that back at the old charter school, IXL time was likewise scheduled twice per week.

Lesson 2-7 of the U of Chicago text is called "Terms Associated with Polygons." (It appears as Lesson 2-6 in the modern edition of the text.)

This is what I wrote last year about today's lesson:


Lesson 2-7 of the U of Chicago text deals with polygons. Notice that this lesson consists almost entirely of definitions and examples. But this chapter was setting up for this lesson, since a polygon is defined (Lesson 2-5, Definitions) in terms of unions (Lesson 2-6, Unions and Intersections) of segments:

A polygon is the union of three or more segments in the same plane such that each segment intersects exactly two others, one at each of its endpoints.

It follows that this section will be very tough on -- but very important for -- English learners. I made sure that there is plenty of room for the students to include both examples and non-examples of polygons. The names of n-gons for various values of n -- given as a list in the text -- will be given in a chart on my worksheet.

The text moves on to define a polygonal region. Many people -- students and teachers alike -- often abuse the term polygon by using it to refer to both the polygon and the polygonal region (which contains both the polygon and its interior). Indeed, even this book does it -- when we reach the chapter on area. Technically, triangles don't have areas -- triangular regions have areas -- but nearly every textbook refers to the "area of a triangle," not the "area of a triangular region." Our text mentions polygonal regions to define the convexity of a polygon -- in particular, if the polygonal region is convex (that is, if any segment whose endpoints lie in the region lies entirely in the region), then the polygon itself is convex.

The text then proceeds to define equilateral, isosceles, and scalene triangles. A triangle hierarchy is shown -- probably to prepare students for the more complicated quadrilateral hierarchy in a later chapter.

Many math teachers who write blogs say that they sometimes show YouTube videos in class. Here is one that gives a song about the three types of triangle. It comes from a TV show from my youth -- a PBS show called "Square One TV." This show contains several songs that may be appropriate for various levels of math, but I don't believe that I've ever seen any teacher recommend them for the classroom. I suspect it's because a teacher has to be exactly the correct age to have been in the target demographic when the show first aired and therefore have fond memories of the show. So let me be the first to recommend this link:



Another song from Square One TV that's relevant to this lesson is "Shape Up." Notice that many geometric figures appear on the singer's head -- though not every shape appearing on her head is a polygon:


Last year right after Lesson 2-7, I posted activities for the Daffynition Game and Jeopardy, and so I repeat those activities today. This is what I wrote last year about these activities:

And now I present my worksheet for the Daffynition Game. Remember that only one of these worksheets need to be given to each group -- in particular, to the scorekeeper in each group. The students write their guesses for Rounds 1-4 (or 5) on their own separate sheet of paper. I recommend that it be torn into strips so that they are harder to recognize. And the teacher provides the index cards, one for each student. Make sure that the students give back the index cards so you can reuse them for the next period. The students may keep their "guess cards," so there should be one for every student in every period.

The second page is for the Jeopardy game -- just as with the Daffynition game, there should be index cards, with the number of points on one side and the question (um, the answer, since the response is the question) on the other. In my class the questions were taped to the front board. In this version of the game, the categories correspond to the four lessons covered earlier this week. Of course, some lessons, such as Lessons 3-1 and 3-2 on angles, are tailor-made for Jeopardy, but unfortunately we haven't quite covered the lesson. Of course, we'll get there next week. I didn't include a Final Jeopardy Question, but here's a tricky one:

Final Jeopardy Category: Types of Polygons

If two points lie in the interior of this type of polygon, then the segment joining them lies in the interior.


No comments:

Post a Comment